25 jun 2016

Cuarto caso de factoreo: "Cuatrinomio cubo perfecto"

  • Todo cuatrinomio de la forma a3 + 3a2b + 3ab2 + b3 en el que dos términos:
a3 y b3, son cubos perfectos; el tercer término : 3a2b, es el triplo del cuadrado de la base del primer término por la base del segundo, y el cuarto término 3ab2,es el triplo de la base del primer cubo por el cuadrado de la base del segundo

x3 + 6x2y + 12xy2 + 8 y3


  • Es un cuatrinomio cubo perfecto, pues:
x3 = (x)3
8y3 = ( 2y )3
6x2y = 3.(x)2.2y
12xy2 = 3.x.(2y)2

Este nombre de cuatrinomio cubo perfecto se debe a que dicho cuatrinomio proviene del cubo de un binomio :

( x+ 2y )3 = ( x+ 2y ). ( x+ 2y ).( x+ 2y ) =
x3 + 6x2y + 12xy2 + 8y3

  • En el caso de una resta :

( x -2y )3 = ( x - 2y ). ( x - 2y ). (x - 2y )
x3 - 6x2y + 12xy2 - 8y 3

No hay comentarios.:

Publicar un comentario